شناسایی و رتبه‌بندی عوامل پیش‌بینی‌کننده حباب قیمتی سهام: کاربرد رگرسیون لوجستیک و شبکه مصنوعی عصبی

Authors

Abstract:

هدف این تحقیق، شناسایی و رتبه بندی عوامل پیش‌بینی کننده تشکیل حباب قیمتی سهام در بورس اوراق بهادار تهران است. بدین منظور ابتدا از طریق آزمون های کشیدگی، تسلسل و چولگی وضعیت حبابی بودن قیمت 158 سهم طی دوره‌ی زمانی 1389 تا 1392 مشخص شد. سپس بر اساس ادبیات پژوهشی، برای پیش بینی حباب از متغیرهای شفافیت اطلاعات، اهرم مالی، نقدشوندگی، نسبت ارزش دفتری به ارزش بازار سهام، p/e، شناوری سهم، مالکیت نهادی و اندازه شرکت استفاده شد. سپس با استفاده از روش رگرسیون لاجستیک تاثیر این متغیرها بر حباب قیمت تایید شد. نتایج تحقیق نشان داد که افزایش در متغیرهای شفافیت، شناوری سهم، نسبت ارزش دفتری به ارزش بازاری، نقدشوندگی سهام، مالکیت نهادی و اندازه شرکت باعث کاهش احتمال حبابی شدن قیمت سهم می‌شود. پس از آموزش شبکه عصبی با استفاده از داده های درون نمونه، شبکه با اطلاعات برون نمونه‌ای بهینه شد. در نهایت با استفاده از تحلیل حساسیت متغیرهای مستقل از طریق شبکه عصبی، این متغیرها بر اساس میزان توانایی پیش بینی حبابی شدن قیمت سهم رتبه بندی شدند.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

شناسایی و رتبه بندی عوامل پیش بینی کننده حباب قیمتی سهام: کاربرد رگرسیون لوجستیک و شبکه مصنوعی عصبی

هدف این تحقیق، شناسایی و رتبه بندی عوامل پیش بینی کننده تشکیل حباب قیمتی سهام در بورس اوراق بهادار تهران است. بدین منظور ابتدا از طریق آزمون های کشیدگی، تسلسل و چولگی وضعیت حبابی بودن قیمت 158 سهم طی دوره ی زمانی 1389 تا 1392 مشخص شد. سپس بر اساس ادبیات پژوهشی، برای پیش بینی حباب از متغیرهای شفافیت اطلاعات، اهرم مالی، نقدشوندگی، نسبت ارزش دفتری به ارزش بازار سهام، p/e، شناوری سهم، مالکیت نهادی ...

full text

کاربرد شبکه عصبی مصنوعی و رگرسیون حداقل مربعات معمولی در مدلسازی تغییرات کاربری سرزمین

با توجه به اهمیت بالای اثر تغییرات کاربری سرزمین در آینده، لازم است الگوی رشد و تغییر کاربری‌ها قبل از اتخاذ هر گونه تصمیمی به مسئولان و تصمیم‌گیرندگان امور مربوط ارائه شود. هدف این پژوهش مدل‌سازی تغییرات کاربری سرزمین در منطقة کوهمره سرخی استان فارس با استفاده از روش رگرسیون حداقل مربعات معمولی برای پیش‌پردازش متغیرها و مدل‌سازی با استفاده از شبکة عصبی است. بدین منظور نقشه‌های کاربری سرزمین با...

full text

مقایسه کاربرد شبکه عصبی مصنوعی، درخت تصمیم، رگرسیون مؤلفه‌های اصلی و رگرسیون خطی چندگانه جهت مدل‌سازی شاخص کیفیت هوای شهری

شاخص کیفیت هوا ابزار کلیدی جهت آگاهی از کیفیت هوا، نحوۀ اثر آلودگی هوا بر سلامت و روش‌های محافظتی در برابر آلودگی هوا است. هدف اصلی این تحقیق مدل‌سازی و برآورد شاخص کیفیت هوا از طریق شبکه عصبی مصنوعی، درخت تصمیم، رگرسیون خطی چندگانه و رگرسیون مؤلفه‌های اصلی است. جهت محاسبه شاخص کیفیت هوا از داده‌های هواشناسی و آلودگی هوای ثبت شده در ایستگاه تجریش و قلهک شهر تهران در دوره زمانی 1385 تا 1390 استف...

full text

شناسایی دستکاری قیمت سهام از طریق مدل ترکیبی الگوریتم ژنتیک – شبکه عصبی مصنوعی و مدل SQDF

هدف این پژوهش، شناسایی دستکاری قیمت سهام در بورس اوراق بهادار تهران می­باشد که از طریق مدل ترکیبی الگوریتم ژنتیک-شبکه عصبی مصنوعی (ANN-GA)[1] و مدل تابع تفکیکی درجه دوی تعدیل شده (SQDF)[2] انجام گرفته است. در این پژوهش از متغیرهای قیمت، حجم معاملات و سهام شناور آزاد برای تطبیق نتایج مدل و داده­های واقعی از دستکاری قیمت استفاده شده است. در مدل ترکیبی ابتدا داده­های مربوط به 316 شرکت از نخستین رو...

full text

کاربرد شبکه های عصبی مصنوعی در پیش بینی شاخص بازدهی نقدی و قیمت سهام

مدل سازی پیش بینی متغیرهای مالی و اقتصادی با توجه به رفتار متغیرها، روش های گوناگونی دارد. تحقیق حاضر، چگونگی پیش بینی بازده سهام در بورس اوراق بهادار تهران را با دو مدل آربیتراژ و شبکه های عصبی مصنوعی مورد آزمون قرار داده است. برای این منظور از اطلاعات روزانه شاخص بازده نقدی و قیمت به عنوان متغیر وابسته و از اطلاعات روزانه قیمت سکه بهار آزادی، حجم معاملات کل بازار و قیمت دلار به عنوان متغیرهای...

full text

مقایسه شبکه‌های عصبی مصنوعی، درخت تصمیم، تحلیل تشخیصی و رگرسیون لوجستیک در پیش‌بینی بارداری ناخواسته در مادران مولتی‌پار شهر خرم‌آباد

Background and Objective: Unwanted pregnancy is a pregnancy that is considered to be unwanted by at least one member of the couple, and has adverse consequences for the family and community. Using four classification models, this study predicted unwanted pregnancy in the urban population of Khorramabad and compared these classification models. Materials and methods: In this cross-sectional s...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 13  issue 4

pages  75- 102

publication date 2017-02-19

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023